martes, 22 de julio de 2008

CONCEPTOS BASICOS DE ELECTRICIDAD

Corriente Eléctrica

La corriente eléctrica es el movimiento de los electrones por el interior de un conductor.

El Atomo

El Atomo es la unidad más pequeña de un elemento químico que mantiene su identidad o sus propiedades y que no es posible dividir mediante procesos químicos. El átomo se compone de un núcleo de carga positiva formado por protones y neutrones, en conjunto conocidos como nucleón, alrededor del cual se encuentra una nube de electrones de carga negativa.

Protones

Es una partícula subatómica con una carga eléctrica de una unidad fundamental positiva. El protón y el neutrón, en conjunto, se conocen como nucleones, ya que conforman el núcleo de los átomos.

Neutrones

Un neutrón es un barión neutro formado por dos quarks down y un quark up. Forma, junto con los protones, los núcleos atómicos. Fuera del núcleo atómico es inestable y tiene una vida media de unos 15 minutos emitiendo un electrón y un antineutrino para convertirse en un protón. Su masa es muy similar a la del protón.

Electrones

Comúnmente representado como e− es una partícula subatómica de tipo fermiónico. En un átomo los electrones rodean el núcleo, compuesto únicamente de protones y neutrones. Los electrones tienen una masa pequeña respecto al protón, y su movimiento genera corriente eléctrica en la mayoría de los metales. Estas partículas desempeñan un papel primordial en la química ya que definen las atracciones con otros átomo.

Corriente Continua

La corriente continua (CC en español, en inglès DC, de Direct Current) es el flujo continuo de electrones a través de un conductor entre dos puntos de distinto potencial. A diferencia de la corriente alterna (CA en español, AC en inglés), en la corriente continua las cargas eléctricas circulan siempre en la misma dirección (es decir, los terminales de mayor y de menor potencial son siempre los mismos). Aunque comúnmente se identifica la corriente continua con la corriente constante (por ejemplo la suministrada por una batería), es continua toda corriente que mantenga siempre la misma polaridad.

Corrinete Alterna

Se denomina corriente alterna (abreviada CA en español y AC en inglés, de Altern Current) a la corriente eléctrica en la que la magnitud y dirección varían cíclicamente. La forma de onda de la corriente alterna más comúnmente utilizada es la de una onda senoidal (figura 1), puesto que se consigue una transmisión más eficiente de la energía. Sin embargo, en ciertas aplicaciones se utilizan otras formas de onda periódicas, tales como la triangular o la cuadrada. Utilizada genéricamente, la CA se refiere a la forma en la cual la electricidad llega a los hogares y a las empresas. Sin embargo, las señales de audio y de radio transmitidas por los cables eléctricos, son también ejemplos de corriente alterna. En estos usos, el fin más importante suele ser la transmisión y recuperación de la información codificada (o modulada) sobre la señal de la CA.

Corriente Directa

La corriente directa (CD) o corriente continua (CC) es aquella cuyas cargas eléctricas o electrones fluyen siempre en el mismo sentido en un circuito eléctrico cerrado, moviéndose del polo negativo hacia el polo positivo de una fuente de fuerza electromotriz (FEM), tal como ocurre en las baterías, las dinamos o en cualquier otra fuente generadora de ese tipo de corriente eléctrica.

Potencia Electrica

Potencia en corriente continua

Cuando se trata de corriente continua (DC) la potencia eléctrica desarrollada en un cierto instante por un dispositivo de dos terminales es el producto de la diferencia de potencial entre dichos terminales y la intensidad de corriente que pasa a través del dispositivo. Esto es, P=V.I




Donde I es el valor instantáneo de la corriente y V es el valor instantáneo del voltaje. Si I se expresa en amperios y V en voltios, P estará expresada en Watts. Igual definición se aplica cuando se consideran valores promedio para I, V y P.

Cuando el dispositivo es una resistencia de valor R o se puede calcular la resistencia equivalente del dispositivo, la potencia también puede calcularse como




Potencia en corriente alterna

Cuando se trata de corriente alterna (AC) sinusoidal, el promedio de potencia eléctrica desarrollada por un dispositivo de dos terminales es una función de los valores eficaces o valores cuadráticos medios, de la diferencia de potencial entre los terminales y de la intensidad de corriente que pasa a través del dispositivo.

En el caso de un receptor de carácter inductivo (caso más común) al que se aplica una tensión v(t) de pulsación ω y valor de pico Vo resulta:




Esto provocará una corriente i(t) retrasada un ángulo φ respecto de la tensión aplicada:




La potencia instantánea vendrá dada como el producto de las expresiones anteriores:




Mediante trigonometría, la anterior expresión puede transformarse en la siguiente:




Y sustituyendo los valores de pico por los eficaces:




Se obtiene así para la potencia un valor constante, VIcos(φ) y otro variable con el tiempo, VIcos(2ωt − φ). Al primer valor se le denomina potencia activa y al segundo potencia fluctuante.

Resistencia

Se denomina resistencia eléctrica, R, de una sustancia, a la oposición que encuentra la corriente eléctrica para circular a través de dicha sustancia. Su valor viene dado en ohmios, se designa con la letra griega omega mayúscula (Ω), y se mide con el Óhmimetro.

Esta definición es válida para la corriente continua y para la corriente alterna cuando se trate de elementos resistivos puros, esto es, sin componente inductiva ni capacitiva. De existir estos componentes reactivos, la oposición presentada a la circulación de corriente recibe el nombre de impedancia.

Según sea la magnitud de esta oposición, las sustancias se clasifican en conductoras, aislantes y semiconductoras. Existen además ciertos materiales en los que, en determinadas condiciones de temperatura, aparece un fenómeno denominado superconductividad, en el que el valor de la resistencia es prácticamente nulo.


Comportamientos ideal y real

Una resistencia ideal es un elemento pasivo que disipa energía en forma de calor según la Ley de Joule. También establece una relación de proporcionalidad entre la intensidad de corriente que la atraviesa y la tensión medible entre sus extremos, relación conocida como Ley de Ohm:



Comportamiento en corriente continua


Una resistencia real en corriente continua (CC) se comporta prácticamente de la misma forma que si fuera ideal, esto es, transformando la energía eléctrica en calor. Su ecuación pasa a ser:





Comportamiento en corriente alterna

Como se ha comentado, una resistencia real muestra un comportamiento diferente del que se observaría en una resistencia ideal si la intensidad que la atraviesa no es continua. En el caso de que la señal aplicada sea senoidal, corriente alterna (CA), a bajas frecuencias se observa que una resistencia real se comportará de forma muy similar a como lo haría en CC, siendo despreciables las diferencias. En altas frecuencias el comportamiento es diferente, aumentando en la medida en la que aumenta la frecuencia aplicada, lo que se explica fundamentalmente por los efectos inductivos que producen los materiales que conforman la resistencia real. Por ejemplo, en una resistencia de carbón los efectos inductivos sólo provienen de los propios terminales de conexión del dispositivo mientras que en una resistencia de tipo bobinado estos efectos se incrementan por el devanado de hilo resistivo alrededor del soporte cerámico, además de aparecer una cierta componente capacitiva si la frecuencia es especialmente elevada. En estos casos, para analizar los circuitos, la resistencia real se sustituye por una asociación serie formada por una resistencia ideal y por una bobina también ideal, aunque a veces también se les puede añadir un pequeño condensador ideal en paralelo con dicha asociación serie. En los conductores, además, aparecen otros efectos entre los que cabe destacar el efecto pelicular....


Consideremos una resistencia R, como la de la figura , a la que se aplica una tensión alterna de valor:




De acuerdo con la ley de Ohm circulará una corriente alterna de valor:





donde: .Se obtiene así, para la corriente, una función senoidal que está en fase con la tensión aplicada



Si se representa el valor eficaz de la corriente obtenida en forma polar:




Y operando matemáticamente:



De donde se deduce que en los circuitos de CA la resistencia puede considerarse como una magnitud compleja sin parte imaginaria o, lo que es lo mismo con argumento nulo, cuya representación binómica y polar serán:




Resistencia equivalente

Figura 4. Asociones generales de resistencias: a) Serie y b) Paralelo. c) Resistencia equivalente
Se denomina resistencia equivalente, RAB, de una asociación respecto de dos puntos A y B, a aquella que conectada la misma diferencia de potencial, UAB, demanda la misma intensidad, I (ver figura 4). Esto significa que ante las mismas condiciones, la asociación y su resistencia equivalente disipan la misma potencia.


Corriente


La corriente eléctrica es el movimiento de los electrones por el interior de un conductor. Su formula es I=V/r

Un material conductor posee una gran cantidad de electrones libres, por lo que permite el paso de la electricidad a través del mismo. Los electrones libres, aunque existen en el material, no se puede decir que pertenezcan a algún átomo en concreto.
Una característica de los electrones libres es que, incluso sin aplicarles un campo eléctrico externo, se mueven a través del material de forma aleatoria debido a la energía térmica. En el caso de que no tengan aplicado ningún campo eléctrico cumplen con la regla de que la suma de estos movimientos aleatorios dentro del material es igual a cero. Esto es, dado un plano imaginario trazado a través del material, si sumamos las cargas (electrones) que atraviesan dicho plano en un sentido y restamos las que lo atraviesan en sentido contrario, estas cantidades se anulan.
Cuando se aplica una fuente de tensión externa (como, por ejemplo, una batería) a los extremos de un material conductor, se está aplicando un campo eléctrico sobre los electrones libres. Este campo provoca el movimiento de los mismos en dirección al terminal positivo del material (los electrones son atraídos (absorbidos) por el terminal positivo y repelidos (inyectados) por el negativo). Por tanto, los electrones libres son los portadores de la corriente eléctrica en los materiales conductores.
Para obtener una corriente de 1 amperio, es necesario que 1 culombio de carga eléctrica por segundo esté atravesando un plano imaginario trazado en el material conductor.

La corriente I en amperios puede ser calculada con la siguiente ecuación: I=Q/T

Q= Carag en culombios
T= Tiempo en segundos

Voltaje, Tension O Diferencia De Potencial

El voltaje, tensión o diferencia de potencial es la presión que ejerce una fuente de suministro de energía eléctrica o fuerza electromotriz (FEM) sobre las cargas eléctricas o electrones en un circuito eléctrico cerrado, para que se establezca el flujo de una corriente eléctrica.A mayor diferencia de potencial o presión que ejerza una fuente de FEM sobre las cargas eléctricas o electrones contenidos en un conductor, mayor será el voltaje o tensión existente en el circuito al que corresponda ese conductor.


Las cargas eléctricas en un circuito cerrado fluyen del polo negativo al polo positivo de la propia fuente<>
La diferencia de potencial entre dos puntos de una fuente de FEM se manifiesta como la acumulación de<>


A la izquierda podemos apreciar la estructura completa de un átomo de cobre (Cu) en estado "neutro",<>
En otras palabras, el voltaje, tensión o diferencia de potencial es el impulso que necesita una carga eléctrica para que pueda fluir por el conductor de un circuito eléctrico cerrado. Este movimiento de las cargas eléctricas por el circuito se establece a partir del polo negativo de la fuente de FEM hasta el polo positivo de la propia fuente.

Frecuencia

Frecuencia, es una medida para indicar el número de repeticiones de cualquier fenómeno o suceso periódico en la unidad de tiempo. Para calcular la frecuencia de un evento, se contabilizan un número de ocurrencias de este teniendo en cuenta un intervalo temporal, luego estas repeticiones se dividen por el tiempo transcurrido.

Según el Sistema Internacional, el resultado se mide en hertz (Hz), en honor a Heinrich Rudolf Hertz. Un hertz es aquel suceso o fenómeno repetido una vez por segundo, 2 Hz son dos sucesos (períodos) por segundo, 3 Hz son tres sucesos (períodos) por segundo, 4 Hz son cuatro sucesos (períodos) por segundo, 5 Hz son cinco sucesos (períodos) por segundo, con esto demostramos teóricamente que casi siempre hay una relación en el número de Hertz con las ocurrencias. Esta unidad se llamó originariamente como ciclo por segundo (cps) y aún se sigue también utilizando. Otras unidades para indicar la frecuencia son revoluciones por minuto (rpm) y radianes por segundo (rad/s). Las pulsaciones del corazón o el tempo musical se mide como golpes por minuto (bpm, del inglés beats per minute.

No hay comentarios: