lunes, 28 de julio de 2008

FUENTES DE PODER

Fuentes Lineales

En electrónica, una fuente de alimentación es un circuito que convierte la tensión alterna de la red industrial en una tensión prácticamente continua.

Clasificación
Las fuentes de alimentación o fuentes de poder se pueden clasificar atendiendo a varios criterios: Fuentes analógicas: sus sistemas de control son analógicos.

Fuentes de alimentación continuas
Usualmente la entrada es una tensión alterna proveniente de la red eléctrica comercial y la salida es una tensión continua con bajo nivel de rizado. Constan de tres o cuatro etapas:
sección de entrada: compuesta principalmente por un rectificador, también tiene elementos de protección como fusibles, varistores, etc.
regulación: su misión es mantener la salida en los valores prefijados.
salida: su misión es filtrar, controlar, limitar, proteger y adaptar la fuente a la carga a la que esté conectada.
Este tipo de fuentes pueden ser tanto lineales como conmutadas.
Las Fuentes Lineales

Siguen el esquema: transformador, rectificador, filtro, regulación y salida. En primer lugar el transformador adapta los niveles de tensión y proporciona aislamiento galvánico. El circuito que convierte la corriente alterna en continua se llama rectificador, después suelen llevar un circuito que disminuye el rizado como un filtro de condensador. La regulación se consigue con uncomponente disipativo regulable. La salida puede ser simplemente un condensador.




En la imagen se muestra un esquema de una fuente de poder lineal como las que alguna vez se utilizaron como fuentes para computadores (hasta los años 80). Actualmente ya no se usan pues las fuentes “conmutadas” las superan en prestaciones, principalmente en el rendimiento.
Las etapas principales son reducción (transformador), rectificación, filtrado y regulación. En los diagramas inferiores se ve la forma de onda del voltaje en cada una de las etapas ya mencionadas.

Transformador





Se denomina transformador a una máquina eléctrica que permite aumentar o disminuir el voltaje o tensión en un circuito eléctrico de corriente alterna, manteniendo la frecuencia. La potencia que ingresa al equipo, en el caso de un transformador ideal, esto es, sin pérdidas, es igual a la que se obtiene a la salida. Las máquinas reales presentan un pequeño porcentaje de pérdidas, dependiendo de su diseño, tamaño, etc.
Los transformadores son dispositivos basados en el fenómeno de la inducción electromagnética y están constituidos, en su forma más simple, por dos bobinas devanadas sobre un núcleo cerrado de hierro dulce o hierro silicio. Las bobinas o devanados se denominan primario y secundario según correspondan a la entrada o salida del sistema en cuestión, respectivamente. También existen transformadores con más devanados; en este caso, puede existir un devanado "terciario", de menor tensión que el secundario.

Funcionamiento

Representación esquemática del transformador.
Si se aplica una fuerza electromotriz alterna en el devanado primario, las variaciones de intensidad y sentido de la corriente alterna crearán un campo magnético variable dependiendo de la frecuencia de la corriente. Este campo magnético variable originará, por inducción electromagnética, la aparición de una fuerza electromotriz en los extremos del devanado secundario.

La relación entre la fuerza electromotriz inductora (Ep), la aplicada al devanado primario y la fuerza electromotriz inducida (Es), la obtenida en el secundario, es directamente proporcional al número de espiras de los devanados primario (Np) y secundario (Ns) .



La razón de transformación del voltaje entre el bobinado primario y el secundario depende del números de vueltas que tenga cada uno. Si el número de vueltas del secundario es el triple del primario, en el secundario habrá el triple de tensión.



Esta particularidad se utiliza en la red de transporte de energía eléctrica: al poder efectuar el transporte a altas tensiones y pequeñas intensidades, se disminuyen las pérdidas por [efecto Joule] y se minimiza el costo de los conductores.
Así, si el número de espiras (vueltas) del secundario es 100 veces mayor que el del primario, al aplicar una tensión alterna de 230 voltios en el primario, se obtienen 23.000 voltios en el secundario (una relación 100 veces superior, como lo es la relación de espiras). A la relación entre el número de vueltas o espiras del primario y las del secundario se le llama relación de vueltas del transformador o relación de transformación.
Ahora bien, como la potencia aplicada en el primario, en caso de un transformador ideal, debe ser igual a la obtenida en el secundario, el producto de la fuerza electromotriz por la intensidad (potencia) debe ser constante, con lo que en el caso del ejemplo, si la intensidad circulante por el primario es de 10 amperios, la del secundario será de solo 0,1 amperios (una centésima parte).


Rectificador

En electrónica, un rectificador es el elemento o circuito que permite convertir la corriente alterna en corriente continua. Esto se realiza utilizando diodos rectificadores, ya sean semiconductores de estado sólido, válvulas al vacío o válvulas gaseosas como las de vapor de mercurio.
Dependiendo de las características de la alimentación en corriente alterna que emplean, se les clasifica en monofásicos, cuando están alimentados por una fase de la red eléctrica, o trifásicos cuando se alimentan por tres fases.
Atendiendo al tipo de rectificación, pueden ser de media onda, cuando sólo se utiliza uno de los semiciclos de la corriente, o de onda completa, donde ambos semiciclos son aprovechados.
El tipo más básico de rectificador es el rectificador monofásico de media onda, constituido por un único diodo entre la fuente de alimentación alterna y la carga.
Filtrado

Como se puede apreciar en las Figuras 2 y 3 la corriente contínua obtenida en la salida de los rectificadores es pulsatoria, lo que la inutilizaría para la mayoría de las aplicaciones electrónicas.
Para evitar este inconveniente se procede a un filtrado para eliminar el rizado de la señal pulsante rectificada. Esto se realiza mediante filtros RC (resistencia-capacitancia) o LC (inductancia-capacitancia), obteniéndose finalmente a la salida una corriente continua con un rizado que depende del filtro y la carga, de modo que sin carga alguna, no existe rizado. Debe notarse que este filtro no es lineal, por la existencia de los diodos, que cargan rápidamente los condensadores, los cuales a su vez, se descargan lentamente a través de la carga.
La tensión de rizado (Vr) será mucho menor que V si la constante de tiempo del condensador R·C es mucho mayor que el período de la señal. Entonces consideraremos la pendiente de descarga lineal y, por tanto, Vr = Vpico·T / (R·C) Siendo R·C la cte de tiempo del condensador, T el período de la señal y Vpico la tensión de pico de la señal..





Filtro De Condensador

Un filtro de condensador es un circuito eléctrico formado por la asociación de diodo y condensador destinado a filtrar o aplanar el rizado, dando como resultado una señal eléctrica de corriente continua cuya tensión no varía prácticamente en el tiempo. El circuito es el mismo que el empleado en la rectificación añadiendo un condensador, por lo que al igual que existen rectificadores de media onda y de onda completa existen filtros de condensador de media y onda completa.

Principio de funcionamiento
Imaginemos, para simplificar el análisis, que el diodo es ideal, es decir, conduce polarizado en directa y no conduce polarizado en inversa e inicialmente el condensador está descargado.

Supongamos que la tensión de entrada es sinusoidal. Al principio, por ser ésta positiva polariza el diodo en directa y éste conduce, de modo que la tensión en el condensador vo es igual a la de entrada (vo = vi).
Cuando se alcanza el máximo de tensión (VM) el condensador ha completado su carga y a partir de entonces la señal de entrada comienza a disminuir. Al ocurrir esto el condensador intenta descargarse a través del diodo pero como la polarización es inversa no conduce; el condensador no puede entonces descargarse quedando entre sus bornes una diferencia de potencial vo = VM que se mantendrá permanentemente cualquiera que sea la tensión de entrada.
En definitiva, la tensión sinusoidal de entrada, corriente alterna, se ha convertido en corriente continua.
Si por cualquier circunstancia la señal de entrada alcanzara un nuevo máximo V'M > VM, el condensador simplemente se cargaría hasta esa tensión quedando luego una corriente continua de valor V'M.







Aplicaciones


Este circuito puede usarse, en fuentes de alimentación para lograr transformar la tensión alterna de la entrada en contínua a la salida. Normalmente forma parte de circuitos de potencia más complicados como son los conversores de potencia. En estos casos el valor del condensador debe ser alto.
Ajustando el valor del condensador para que tenga un mayor margen de variación puede utilizarse este circuito para la demodulación de señales AM, el resultado es una señal parecida a la envolvente de la señal modulada. Para esta aplicación el valor del condensador es mucho menor que en la anterior y dependiente del índice de modulación.

Regulador

Un regulador es un dispositivo electrónico creado para obtener un valor de salida deseado en base al nivel de entrada, ya sea mecánico o eléctrico.
Este consiste en fijar el valor de la tensión de salida, siendo esta típicamente de 9, 12, 15 o 18 V, en función de la entrada y las condiciones de la pista. Por lo general es un elemento de bajada y con una disipación de calor proporcional. Un ejemplo mecánico es una llave de agua donde se regula el flujo de agua que sale por ella.
Un regulador eléctrico puede pensarse en el alternador de un coche, para cargar la batería eléctrica, o en un cargador de un aparato donde la entrada es la línea eléctrica y un transformador, y obtenemos a la salida el voltaje requerido por el aparato.
Los reguladores son de dos tipos, fijos y ajustables, de esta forma se puede tener cualquier gama de tensiones con un bajo coste.
En sistemas de control se requieren valores fijos con precisión de los niveles milesimales en los cuales los reguladores desempeñan un papel muy importante.


Mas Información en http://es.wikipedia.org/wiki/Regulador_de_tensi%C3%B3n

SIMBOLOS DE LA ELECTRICIDAD




Mas Simbologia En http://www.electronicaestudio.com/simbologia.htm

martes, 22 de julio de 2008

CONCEPTOS BASICOS DE ELECTRICIDAD

Corriente Eléctrica

La corriente eléctrica es el movimiento de los electrones por el interior de un conductor.

El Atomo

El Atomo es la unidad más pequeña de un elemento químico que mantiene su identidad o sus propiedades y que no es posible dividir mediante procesos químicos. El átomo se compone de un núcleo de carga positiva formado por protones y neutrones, en conjunto conocidos como nucleón, alrededor del cual se encuentra una nube de electrones de carga negativa.

Protones

Es una partícula subatómica con una carga eléctrica de una unidad fundamental positiva. El protón y el neutrón, en conjunto, se conocen como nucleones, ya que conforman el núcleo de los átomos.

Neutrones

Un neutrón es un barión neutro formado por dos quarks down y un quark up. Forma, junto con los protones, los núcleos atómicos. Fuera del núcleo atómico es inestable y tiene una vida media de unos 15 minutos emitiendo un electrón y un antineutrino para convertirse en un protón. Su masa es muy similar a la del protón.

Electrones

Comúnmente representado como e− es una partícula subatómica de tipo fermiónico. En un átomo los electrones rodean el núcleo, compuesto únicamente de protones y neutrones. Los electrones tienen una masa pequeña respecto al protón, y su movimiento genera corriente eléctrica en la mayoría de los metales. Estas partículas desempeñan un papel primordial en la química ya que definen las atracciones con otros átomo.

Corriente Continua

La corriente continua (CC en español, en inglès DC, de Direct Current) es el flujo continuo de electrones a través de un conductor entre dos puntos de distinto potencial. A diferencia de la corriente alterna (CA en español, AC en inglés), en la corriente continua las cargas eléctricas circulan siempre en la misma dirección (es decir, los terminales de mayor y de menor potencial son siempre los mismos). Aunque comúnmente se identifica la corriente continua con la corriente constante (por ejemplo la suministrada por una batería), es continua toda corriente que mantenga siempre la misma polaridad.

Corrinete Alterna

Se denomina corriente alterna (abreviada CA en español y AC en inglés, de Altern Current) a la corriente eléctrica en la que la magnitud y dirección varían cíclicamente. La forma de onda de la corriente alterna más comúnmente utilizada es la de una onda senoidal (figura 1), puesto que se consigue una transmisión más eficiente de la energía. Sin embargo, en ciertas aplicaciones se utilizan otras formas de onda periódicas, tales como la triangular o la cuadrada. Utilizada genéricamente, la CA se refiere a la forma en la cual la electricidad llega a los hogares y a las empresas. Sin embargo, las señales de audio y de radio transmitidas por los cables eléctricos, son también ejemplos de corriente alterna. En estos usos, el fin más importante suele ser la transmisión y recuperación de la información codificada (o modulada) sobre la señal de la CA.

Corriente Directa

La corriente directa (CD) o corriente continua (CC) es aquella cuyas cargas eléctricas o electrones fluyen siempre en el mismo sentido en un circuito eléctrico cerrado, moviéndose del polo negativo hacia el polo positivo de una fuente de fuerza electromotriz (FEM), tal como ocurre en las baterías, las dinamos o en cualquier otra fuente generadora de ese tipo de corriente eléctrica.

Potencia Electrica

Potencia en corriente continua

Cuando se trata de corriente continua (DC) la potencia eléctrica desarrollada en un cierto instante por un dispositivo de dos terminales es el producto de la diferencia de potencial entre dichos terminales y la intensidad de corriente que pasa a través del dispositivo. Esto es, P=V.I




Donde I es el valor instantáneo de la corriente y V es el valor instantáneo del voltaje. Si I se expresa en amperios y V en voltios, P estará expresada en Watts. Igual definición se aplica cuando se consideran valores promedio para I, V y P.

Cuando el dispositivo es una resistencia de valor R o se puede calcular la resistencia equivalente del dispositivo, la potencia también puede calcularse como




Potencia en corriente alterna

Cuando se trata de corriente alterna (AC) sinusoidal, el promedio de potencia eléctrica desarrollada por un dispositivo de dos terminales es una función de los valores eficaces o valores cuadráticos medios, de la diferencia de potencial entre los terminales y de la intensidad de corriente que pasa a través del dispositivo.

En el caso de un receptor de carácter inductivo (caso más común) al que se aplica una tensión v(t) de pulsación ω y valor de pico Vo resulta:




Esto provocará una corriente i(t) retrasada un ángulo φ respecto de la tensión aplicada:




La potencia instantánea vendrá dada como el producto de las expresiones anteriores:




Mediante trigonometría, la anterior expresión puede transformarse en la siguiente:




Y sustituyendo los valores de pico por los eficaces:




Se obtiene así para la potencia un valor constante, VIcos(φ) y otro variable con el tiempo, VIcos(2ωt − φ). Al primer valor se le denomina potencia activa y al segundo potencia fluctuante.

Resistencia

Se denomina resistencia eléctrica, R, de una sustancia, a la oposición que encuentra la corriente eléctrica para circular a través de dicha sustancia. Su valor viene dado en ohmios, se designa con la letra griega omega mayúscula (Ω), y se mide con el Óhmimetro.

Esta definición es válida para la corriente continua y para la corriente alterna cuando se trate de elementos resistivos puros, esto es, sin componente inductiva ni capacitiva. De existir estos componentes reactivos, la oposición presentada a la circulación de corriente recibe el nombre de impedancia.

Según sea la magnitud de esta oposición, las sustancias se clasifican en conductoras, aislantes y semiconductoras. Existen además ciertos materiales en los que, en determinadas condiciones de temperatura, aparece un fenómeno denominado superconductividad, en el que el valor de la resistencia es prácticamente nulo.


Comportamientos ideal y real

Una resistencia ideal es un elemento pasivo que disipa energía en forma de calor según la Ley de Joule. También establece una relación de proporcionalidad entre la intensidad de corriente que la atraviesa y la tensión medible entre sus extremos, relación conocida como Ley de Ohm:



Comportamiento en corriente continua


Una resistencia real en corriente continua (CC) se comporta prácticamente de la misma forma que si fuera ideal, esto es, transformando la energía eléctrica en calor. Su ecuación pasa a ser:





Comportamiento en corriente alterna

Como se ha comentado, una resistencia real muestra un comportamiento diferente del que se observaría en una resistencia ideal si la intensidad que la atraviesa no es continua. En el caso de que la señal aplicada sea senoidal, corriente alterna (CA), a bajas frecuencias se observa que una resistencia real se comportará de forma muy similar a como lo haría en CC, siendo despreciables las diferencias. En altas frecuencias el comportamiento es diferente, aumentando en la medida en la que aumenta la frecuencia aplicada, lo que se explica fundamentalmente por los efectos inductivos que producen los materiales que conforman la resistencia real. Por ejemplo, en una resistencia de carbón los efectos inductivos sólo provienen de los propios terminales de conexión del dispositivo mientras que en una resistencia de tipo bobinado estos efectos se incrementan por el devanado de hilo resistivo alrededor del soporte cerámico, además de aparecer una cierta componente capacitiva si la frecuencia es especialmente elevada. En estos casos, para analizar los circuitos, la resistencia real se sustituye por una asociación serie formada por una resistencia ideal y por una bobina también ideal, aunque a veces también se les puede añadir un pequeño condensador ideal en paralelo con dicha asociación serie. En los conductores, además, aparecen otros efectos entre los que cabe destacar el efecto pelicular....


Consideremos una resistencia R, como la de la figura , a la que se aplica una tensión alterna de valor:




De acuerdo con la ley de Ohm circulará una corriente alterna de valor:





donde: .Se obtiene así, para la corriente, una función senoidal que está en fase con la tensión aplicada



Si se representa el valor eficaz de la corriente obtenida en forma polar:




Y operando matemáticamente:



De donde se deduce que en los circuitos de CA la resistencia puede considerarse como una magnitud compleja sin parte imaginaria o, lo que es lo mismo con argumento nulo, cuya representación binómica y polar serán:




Resistencia equivalente

Figura 4. Asociones generales de resistencias: a) Serie y b) Paralelo. c) Resistencia equivalente
Se denomina resistencia equivalente, RAB, de una asociación respecto de dos puntos A y B, a aquella que conectada la misma diferencia de potencial, UAB, demanda la misma intensidad, I (ver figura 4). Esto significa que ante las mismas condiciones, la asociación y su resistencia equivalente disipan la misma potencia.


Corriente


La corriente eléctrica es el movimiento de los electrones por el interior de un conductor. Su formula es I=V/r

Un material conductor posee una gran cantidad de electrones libres, por lo que permite el paso de la electricidad a través del mismo. Los electrones libres, aunque existen en el material, no se puede decir que pertenezcan a algún átomo en concreto.
Una característica de los electrones libres es que, incluso sin aplicarles un campo eléctrico externo, se mueven a través del material de forma aleatoria debido a la energía térmica. En el caso de que no tengan aplicado ningún campo eléctrico cumplen con la regla de que la suma de estos movimientos aleatorios dentro del material es igual a cero. Esto es, dado un plano imaginario trazado a través del material, si sumamos las cargas (electrones) que atraviesan dicho plano en un sentido y restamos las que lo atraviesan en sentido contrario, estas cantidades se anulan.
Cuando se aplica una fuente de tensión externa (como, por ejemplo, una batería) a los extremos de un material conductor, se está aplicando un campo eléctrico sobre los electrones libres. Este campo provoca el movimiento de los mismos en dirección al terminal positivo del material (los electrones son atraídos (absorbidos) por el terminal positivo y repelidos (inyectados) por el negativo). Por tanto, los electrones libres son los portadores de la corriente eléctrica en los materiales conductores.
Para obtener una corriente de 1 amperio, es necesario que 1 culombio de carga eléctrica por segundo esté atravesando un plano imaginario trazado en el material conductor.

La corriente I en amperios puede ser calculada con la siguiente ecuación: I=Q/T

Q= Carag en culombios
T= Tiempo en segundos

Voltaje, Tension O Diferencia De Potencial

El voltaje, tensión o diferencia de potencial es la presión que ejerce una fuente de suministro de energía eléctrica o fuerza electromotriz (FEM) sobre las cargas eléctricas o electrones en un circuito eléctrico cerrado, para que se establezca el flujo de una corriente eléctrica.A mayor diferencia de potencial o presión que ejerza una fuente de FEM sobre las cargas eléctricas o electrones contenidos en un conductor, mayor será el voltaje o tensión existente en el circuito al que corresponda ese conductor.


Las cargas eléctricas en un circuito cerrado fluyen del polo negativo al polo positivo de la propia fuente<>
La diferencia de potencial entre dos puntos de una fuente de FEM se manifiesta como la acumulación de<>


A la izquierda podemos apreciar la estructura completa de un átomo de cobre (Cu) en estado "neutro",<>
En otras palabras, el voltaje, tensión o diferencia de potencial es el impulso que necesita una carga eléctrica para que pueda fluir por el conductor de un circuito eléctrico cerrado. Este movimiento de las cargas eléctricas por el circuito se establece a partir del polo negativo de la fuente de FEM hasta el polo positivo de la propia fuente.

Frecuencia

Frecuencia, es una medida para indicar el número de repeticiones de cualquier fenómeno o suceso periódico en la unidad de tiempo. Para calcular la frecuencia de un evento, se contabilizan un número de ocurrencias de este teniendo en cuenta un intervalo temporal, luego estas repeticiones se dividen por el tiempo transcurrido.

Según el Sistema Internacional, el resultado se mide en hertz (Hz), en honor a Heinrich Rudolf Hertz. Un hertz es aquel suceso o fenómeno repetido una vez por segundo, 2 Hz son dos sucesos (períodos) por segundo, 3 Hz son tres sucesos (períodos) por segundo, 4 Hz son cuatro sucesos (períodos) por segundo, 5 Hz son cinco sucesos (períodos) por segundo, con esto demostramos teóricamente que casi siempre hay una relación en el número de Hertz con las ocurrencias. Esta unidad se llamó originariamente como ciclo por segundo (cps) y aún se sigue también utilizando. Otras unidades para indicar la frecuencia son revoluciones por minuto (rpm) y radianes por segundo (rad/s). Las pulsaciones del corazón o el tempo musical se mide como golpes por minuto (bpm, del inglés beats per minute.