lunes, 27 de octubre de 2008

jueves, 11 de septiembre de 2008

Nuevas Tecnologias En Pantallas De Monitores

Breve explicación de las tecnologías TFT, LCD, PLASMA, OLED, CRT, SED y su funcionamiento:
  • TFT. No es una tecnología de visualización, sino que se trata de un tipo de transistores con el que se consigue mejorar la calidad de la imagen. Se usa casi siempre xon pantallas LCD. La tecnología LCD utiliza moléculas de cristal líquido colocadas entre diferentes capas que los polarizan y los rotan según si se quiere mostrar un color u otro. Su principal ventaja, además de su reducido tamaño, es el ahorro de energía, un 40% de ahorro con respecto a televisores CRT. Cuando estas pantallas usan transistores TFT entonces estamos hablando de TFT LCDs, los cuáles son los modelos más extendidos.
  • LCD. Ya lo hemos explicado arriba.
  • Plasma. Una pantalla de plasma es una pantalla plana en la cual la luz se crea por la excitación de sustancias fosforecentes mediante una descarga de plasma entre dos pantallas planas de vidrio. Entre sus principales ventajas están una buena resolución y brillo excepcional y que no contiene mercurio, a diferencia de las pantallas LCD.
  • Oled. Se trata de una variante del LED clásico, pero donde la capa de emisión tiene un componente orgánico. Las pantallas OLED tienen la ventaja de no requerir luz trasera, con lo que ahorran mucha energía. Su coste también es menor. La principal desventaja que presenta es que su tiempo de vida no es tan bueno como el de las anteriores tecnologías que os hemos presentado.
  • SED. El Panel SED es un tipo de panel visualizador para pantallas planas caracterizado por usar la tecnología de las pantallas de tubo tradicionales (CRT) para cada uno de los puntos (píxeles) mostrados en pantalla. Cada pixel es un micro tubo de rayos catódicos. En principio, este tipo de paneles ofrece las ventajas de los tubos de imagen y los TFT, sin los defectos de ambos. De esta manera se consigue mejorar el contraste y el ángulo de visión sin aumentar el consumo. También permite ampliar las dimensiones de la pantalla con respecto a las pantallas de tecnología TFT o las de plasma. El proyecto ha sido desarrollado conjuntamente por Canon y Toshiba.
  • CRT. El Tubo de Rayos Catódico (el monitor de tubo) es una tecnología anticuada y de sobra conocido por casi todos, de forma que no explicaremos esta tecnología. Esta tecnología emite radiaciones eléctricas y magnéticas, por lo que es mejor usar alguna de las tecnologías comentadas arriba antes que esta, ya un poco anticuada.

Televisión de Plasma o LCD?

Lo más usual es encontrarnos pantallas de televisor de Plasma y LCD, mientras que en monitores domina TFT y LCD. Pero, ¿cuál comprar? ¿Cuál es mejor? La respuesta depende de el uso que le vayamos a dar.

  • LCD:
    • + Mayor resolución. Las pantallas LCD tienen mucha más resolución que las de plasma y están disponibles en un abanico de tamaño mucho más amplio. Comercialmente están disponibles desde 15 pulgadas hasta más de 47, mientras que el plasma no comercializa pantallas de pocas pulgadas. De forma experimental se han llegado a fabricar televisores LCD de más de 70 pulgadas. Cualquier pantalla LCD suele estar preparada para la alta definición HD Ready y las de más de 37 pulgadas pueden ser compatibles con full HD.
    • + Precio. Aunque los grandes tamaños suelen ser siempre más caros, las pantallas LCD han bajado mucho su precio con respecto a años anteriores.
    • + Consumo y duración. Como media, un LCD consume un 30% menos de electricidad que un plasma y tiene una vida superior, cercana a las 60.000 horas. A diferencia del plasma, no sufre efecto memoria o quemado cuando las imágenes están fijas en pantalla durante mucho tiempo. Estas diferen cias son menos evidentes si se comparan con los plasmas modernos, que han salvado muchos de estos obstáculos.
    • - Problemas con el negro. El uso de una potente fuente de retroiluminación impide que en la pantalla se consigan colores negros perfectos. El contraste, por tanto, es siempre peor que el de una pantalla de plasma. En el futuro se podrá solucionar con el uso de retroiluminación LED selectiva para ciertas áreas de la imagen.
    • - Las imágenes en movimiento. Si un objeto se mueve muy rápido en pantalla crea estelas que rebajan la calidad de la imagen. Es complicado, por ejemplo, leer la «letra pequeña» de los anuncios en televisión. Hay técnicas que minimizan el impacto y los nuevos paneles tienen tiempos de res puesta mucho más rápidos, pero la solución al problema necesitará todavía de un mayor esfuerzo en investigación y desarrollo.
    • - Ángulos de visión más reducidos. Aunque la imagen puede verse desde casi cualquier ángulo, las pantallas LCD pierden calidad y fidelidad en la reproducción de colores al acercarse a los 180 grados de visión horizontal o vertical. El rendimiento y calidad de los paneles ha mejorado mucho durante los últimos años y este problema, hoy en día, es casi inapreciable.
  • Plasma:
    • + Contraste y colores. El plasma es capaz de ofrecer un contraste superior y un color negro perfecto. Es una tecnología muy indicada para habitaciones poco iluminadas y, en general, reproduce los colores de forma muy fiable. En cuartos con mucha luz o con luz solar directa puede tener algunos problemas con los reflejos ya que la superficie suele ser muy reflectante.
    • + Tamaño. Quienes quieren tele grande no tienen muchas más soluciones que recurrir a esta tecnología. Se pueden conseguir plasmas de 50 y 65 pulgadas con facilidad y hay modelos comerciales de hasta 103 pulgadas, aunque restringidos a mercados muy concretos. La otra opción es la tecnología de proyección y retroproyección.
    • + Imágenes en movimiento. A diferencia de los paneles LCD, el plasma no tiene problemas con las imágenes en movimiento. No se producen estelas ni artefactos cuando un objeto se mueve a gran velocidad por la pantalla. Es mucho más fácil leer textos que aparecen en la pantalla.
    • - Resolución. Cuesta mucho más conseguir la alta resolución en los paneles de plasma. Los televisores de 42 pulgadas ya son HD R eady pero el paso a la full HD es complicado y sólo los modelos más grandes podrán disfrutarla correctamente. Mientras, los LCD de menor resolución poseen esta característica.
    • - Consumo y duración. Los primeros plasmas tenían una vida muy limitada y una tendencia a quemar zonas de la pantalla que estaban expuestas a la misma imagen durante mucho tiempo. Además consumían mucha más energía que los LCD. Aún hoy tienen un consumo ligeramente mayor de media, aunque los paneles de última generación se comportan de forma similar al cristal líquido. La vida media de un panel de plasma ha subido desde las 20.000 horas hasta más de 40.000.
    • - Precio. Al plasma le cuesta competir con el LCD en coste una vez éste empieza a producirse de forma masiva. En tamaños grandes es una opción más económica.

En general, si quieres una pantalla grande y barata, es mejor Plasma, pero consume más y dura menos, y si lo que quieres es algo mediano y duradero, LCD.

¿Monitores de Tubo (CRT) o LCD (TFT)?

La respuesta a esta pregunta es bien sencilla. LCD (TFT).

A la hora de elegir un monitor, veréis que los CRT son más bar

atos, aunque ya casi no venden. Deberéis tener en cuenta, el uso que se le va a dar, el espacio que ocupa, el dinero que cuesta, y las horas que pasaréis delante del ordenador. Esto es lo mas importante, puesto que los ojos hacen un gran esfuerzo por mantener la vista sobre puntos concretos
en una pantalla de PC.

Hay que tener en cuenta que las pantallas CRT, emiten radiaciones eléctricas y magnéticas, mientras que un TFT o LCD no emite ese tipo de radiaciones.

Nuevas Tecnologias - HP Monitor Panoramico


HP apuesta por la comodidad del usuario con su nuevo monitor panorámico de pantalla plana


HP presen ta su nuevo monitor panorámico de pantalla plana L2045w de 20 pulgadas diseñado para ofrecer la mejor ergonomía, así como obtener una alta definición en las imágenes, diseños y datos de nuestro ordenador. La novedad más importante es que la posición del monitor se adapta a la postura que resulta más cómoda para cada trabajador.
Puede colocarse sobre la mesa de trabajo o utilizando el accesorio opcional Hp Quick Release en la pared, con un soporte tipo brazo, o incorporado con otro dispositivo compatible con VESA, como por ejemplo, el HP Compaq Thin Client. La gestión de cables del monitor permite ofrecer una visión más limpia del área de trabajo, escondiéndolos en su interior.
Cabe destacar también el pequeño software HP Display Assistant que permite ajustar la visualización a través del software, en lugar de hacerlo en el menú de la pantalla (OSD). Además cuenta con un ratio de contraste de 600;1, una resolución nítida que llega a los 1680 x 1050 píxeles y una velocidad de respuesta de 5 ms. Por otro lado, combina la conexión VGA y lo último en tecnología de las conexiones DVI-D, con lo que soporta tanto el modo digital como el analógico.
El monitor HP L2045w permite ajustar la altura de la base, la inclinación y girar el monitor rotándolo hasta 90 grados. Si se prefiere trabajar sentado a una altura inferior a la de la pantalla, el monitor se puede posicionar por encima de la cabeza, gracias a la altura ajustable con su posición más baja.

Pantallas Holograficas

Un dispositivo holográfico (holographic display en inglés) es aquél que utiliza los principios de la holografia para la reproducción de imágenes tridimensionales o pseudo-tridimensionales. Es una tecnologia que no necesita de aparatos externos de visión para reproducir imágenes tridimensionales como pueden ser gafas o cascos especiales.

Otros sistemas de reproducción de imágenes tridimensionales son los sistemas estereoscopicos o los dispositivos volumetricos.


Holografía

La holografía es una técnica avanzada de fotografía que se basa en la creación de hologramas. Un holograma de un objeto o de un

a escena es un registro plano, realizado con un rayo láser sobre una película fotosensible, de la interferencia que se produce entre dos haces de luz coherentes cuando la luz de uno de los haces se refleja en el objeto. Cuando la película recibe la luz desde una perspectiva adecuada se proyecta una imagen en tres dimensiones.

Visión histórica de la holografía

La holografía fue un descubrimiento d

el físico húngaro Dennis Gabor en el año 1947. El origen de su investigación era encontrar una mejora en la resolución y definición de las imágenes del microscopio electrónico. Por su contribución teórica a las técnicas holográficas fue galardonado con el premio Nobel de Física en el año 1971.

Los hologramas de Gabor eran muy pobre por las fuentes de luz que utilizaba. La técnica se mejoró años más tarde con el desarrollo del láser y con la aportación de otros investigadores durante los años 60. Entre otros cabe destacar a Emmett Leith y Juris Upatnieks (EE.UU) o Yuri Denisyuk (URSS). Fueron los primer

os en utilizar el holograma para registrar imágenes en tres dimensiones utilizando como fuente el rayo láser.

Funcionamiento

Grabación

La luz emitida por un láser se descompone en dos haces utilizando un espejo semitransparente. Uno de los haces ilumina el negativo fotográfico de forma directa. El haz objeto ilumina el objeto o escena de interés y la luz reflejada y difractada se dirige hacia el negativo donde se superpone con la luz del primer láser. La superposición entre los dos haces sobre el negativo produce la impresión de una trama de franjas de interferencia. Sobre el negativo ha quedado registrado información de amplitud

y fase de la escena capturada.

Reconstrucción

Aplicaciones

  • En Videos y DVD,tarjetas de crédito,productos de moda, discos compactos, billetes, productos de marca y prestigio, pasaportes acreditaciones, certificados y titulos, carnets, medicamentos, cosmeticos, perfumes,etc.
  • En etiquetas autoadhesivas es usado como Símbolo de originalidad y seguridad.
  • Reproducción de imagen y vídeo tridimensional; múltiples aplicaciones en sectores como la televisión, el diseño industrial, la medicina, la educación,la investigación,las comunicaciones...

Ejemplos de dispositivos holográficos

El siguiente apartado mostrará información sobre diferentes ejemplos que podemos encontrar en la actualidad sobre dispositivos holográficos.

Cheoptics 360

El dispositivo “Cheoptics 360” desarrollado por las empresas viZoo y Ramboll es un sistema de vídeo holográfico. Es un proyector formado por una pirámide invertida que es capaz de generar imágenes "tridimensionales" dentro de su espacio de proyección. La imagen proyectada se ve totalmente en tres dimensiones desde cualquier ángulo de observación.

Hay proyectores en cada extremo del sistema que se combinan para generar la imagen en el centro provocado una sensación de total realismo en el espectador. Se pueden proyectar imágenes desde 1,5 hasta 30 metros de altura con cualquier condición lumínica ambiental (interior o exterior). También permite reproducir vídeos de películas o desde PC.

Heliodisplay

Imagen del Heliodisplay

Imagen del Heliodisplay

Heliodisplay es una tecnología creada por la empresa IO2Technology que reproduce hologramas en dos dimensiones sin utilizar un medio físico como una pantalla. Permite proyectar una imagen estática o en movimiento con una cierta calidad de unas 27 pulgadas de tamaño sin utilizar medios alternativos com humo o agua y puede ser utilizado en cualquier entorno sin instalaciones adicionales.

El dispositivo se podría describir como una caja que se puede conectar a través de un conector USB a una fuente de video o de imagen como puede ser un DVD o un PC por ejemplo. Utiliza aire normal para funcionar. Lo que se hace es convertir las propiedades del reflejo del aire. El aire se captura, se convierte de forma instantánea y se vuelve a expulsar. La imagen se proyecta sobre el aire convertido.

Otra característica importante es que la imagen generada es interactiva. Cabe decir que la sensación de la imagen no es totalmente tridimensional. La sensación 3D sólo es frontal ya que visto de lado, la imagen se ve plana.

Mark II

Es un proyecto de vídeo holográfico que se está desarrollando por la Massachussets Institute of Technology (M.I.T.) por un grupo de investigadores encabezados por el profesor S.Benton.

El sistema se basa en el cálculo mediante ordenador de las franjas de interferencia que producirían imágenes sintéticas. Al sintetizar estas franjas mediante complejos modelos matemáticos se consigue una reducción importante en el número de muestras de los hologramas sintéticos restringiendo el parallax de movimiento a las direcciones con más interés. En este dispositivo sólo se codifica la información de parallax horizontal porque se supone que será el movimiento más realizado por parte del espectador. Con esto se reduce el número de muestras de las franjas de interferencia en un factor de 100.

El sistema se basa en la construcción de las imágenes mediante una exploración conjunta de diversos haces láser la amplitud de las cuales se modula en concordancia con las franjas de interferencias del holograma calculado previamente. La exploración se realiza mediante un conjunto de moduladores acustic-ópticos que barren diferentes franjas horizontales de la imagen. Se pueden presentar imágenes de 150x75x150 mm con un ángulo de visión horizontal de 36 grados y es capaz de mostrar una imagen por segundo.

Mark III

El sistema denominado Mark III es una evolución de los dipositivos holográficos diseñados por el MIT durant la década de los 80. Los sistemas anteriores eran muy complejos y voluminosos. Necesitaban hardware especializado para generar el señal de video. El objetivo del projecto es el de desarrollar un sistema de visualitzación holográfico de ámbito doméstico. Formará imágenes monocromáticas en 3D con unas dimensiones similares al cubo de Rubik.

Para crear un vídeo holográfico se produce un modelo tridimensional en tiempo real de los objetos de dentro de una escena. A partir de éste, se calcula el patrón de difracción necessario per formar la imagen. El procesado es muy complejo, pero se ha optimitzado para trabajar con tarjetas gráficas domésticas. El señal de video generado se envia a un modulador de luz, que es, básicamente una guía de ondas cubierta de un material pizeléctrico, que según el senyal recibido se deforma más o menos. La onda de luz está compuesta de diferentes intensidades y frequencias. Al proyectarse sobre un cristal translúcido las diferentes ondas interfieren generando una escena tridimensional. Este nuevo modulador permite emitir luz en vertical y horitzontal evitando así el uso de muchas lentes y espejos

Interactive 360º Light Field Display

Es un dispositivo de video holográfico desarrollado en conjunto por Sony, Fake Space Lab y la Universidad del Sur de California presentado en el SIGGRAPH 2007.

El sistema presentado consta de un videoproyector de alta velocidad, un espejo rotatorio cubierto por un difusor holográfico y un circuito semiconductor FPGA(Field Programmable Gate Array) que se encarga de descodificar el señal DVI. Se utiliza una targeta gráfica y estándar que puede renderizar más de 5000 imágenes por segundo y proyectar vistas en 360 grados con separación de 1,25 grados. Algunas características se listan a continuación:

  • No requiere gafas especiales.
  • Es omnidireccional: Visión en 3D en 360 grados.
  • No reproduce en color
  • Permite la interactividad con la imagen holográfica.

Conclusiones

La utilitzación de les técnicas holográficas en sistemes de vídeo es un proceso bastante complejo que supone un reto a nivel tecnológico. Sigen apareciendo dispositivos en el mercado como pantallas planas ,y para ellas se requiere una tarjeta de tratamiento gráfico que puede resolver estos retos, se podría convertir en el sistema que se utilizaría en una futura televisión tridimensional sin embargo, no existen estandares ni grupos de trabajo sectoriales lo cual dificulta su avance y popularizacion. Hoy en día aun existen problemas para registrar escenas reales porque requieren unas condiciones lumínicas muy complejas así como también es necessario disponer de dispositivos electrónicos que permitan captar franjas de interferencia con una resolución más elevada de la que podemos encontrar hoy en día. Otro de los problemas que se tendrán que solucionar en un futuro para poder implementar esta tecnología es la del ancho de banda tan grande que se tiene que utilizar para la transmisión de una señal de estas características.

Pantalla táctil

Pantalla táctil de una PDA

Pantalla táctil de una PDA

Una pantalla táctil (touchscreen en inglés) es una pantalla que mediante un contacto directo sobre su superficie permite la entrada de datos y órdenes al dispositivo. A su vez, actúa como periférico de salida, mostrando los resultados introducidos previamente. Este contacto también se puede realizar con lápiz u otras herramientas similares. Actualmente hay pantallas táctiles que pueden instalarse sobre una pantalla normal. Así pues, la pantalla táctil puede actuar como periférico de entrada y periférico de salida de datos.

Las pantallas tactiles se han ido haciendo populares desde la invención de la interfaz electrónica táctil en 1971 por el Dr. Samuel C. Hurst. Han llegado a ser comunes en TPVs, en cajeros automáticos y en PDAs donde se suele emplear un estilo para manipular la interfaz gráfica de usuario y para introducir datos. La popularidad de los teléfonos inteligentes, de las PDAs, de las vídeo consolas portátiles o de los navegadores de automóviles está generando la demanda y la aceptación de las pantallas táctiles.

El HP-150 fue, en 1983, uno de los primeros ordenadores comerciales del mundo que disponía de pantalla táctil. En realidad no tenía una pantalla táctil en el sentido propiamente dicho, sino una pantalla de tubo Sony de 9 pulgadas rodeada de transmisores y receptores infrarrojos que detectaban la posición de cualquier objeto no-transparente sobre la pantalla.

Las pantallas táctiles de última generación consisten en un cristal transparente donde se sitúa una lámina que permite al usuario interactuar directamente sobre esta superficie, utilizando un proyector para lanzar la imagen sobre la pantalla de cristal. Se sale de lo que hasta hoy día se entendía por pantalla táctil que era básicamente un monitor táctil.

Las pantallas táctiles son populares en la industria pesada y en otras situaciones, tales como exposiciones de museos donde los teclados y los ratones no permiten una interacción satisfactoria, intuitiva, rápida, o exacta del usuario con el contenido de la exposición.



Resistiva

Una pantalla táctil resistiva esta formada por varias capas. Las más importantes son dos finas capas de material conductor entre las cuales hay una pequeña separación. Cuando algún objeto toca la superficie de la capa exterior, las dos capas conductoras entran en contacto en un punto concreto. De esta forma se produce un cambio en la corriente eléctrica que permite a un controlador calcular la posición del punto en el que se ha tocado la pantalla midiendo la resistencia. Algunas pantallas pueden medir, aparte de las coordenadas del contacto, la presión que se ha ejercido sobre la misma.

Las pantallas táctiles resistivas son por norma general más asequibles pero tienen una pérdida de aproximadamente el 25% del brillo debido a las múltiples capas necesarias. Otro inconveniente que tienen es que pueden ser dañadas por objetos afilados. Por el contrario no se ven afectadas por elementos externos como polvo o agua, razón por la que son el tipo de pantallas táctiles más usado en la actualidad.

De Onda Acústica Superficial

La tecnología de onda acústica superficial (denotada a menudo por las siglas SAW, del inglés Surface Acoustic Wave) utiliza ondas de ultrasonidos que se transmiten sobre la pantalla táctil. Cuando la pantalla es tocada, una parte de la onda es absorbida. Este cambio en las ondas de ultrasonidos permite registrar la posición en la que se ha tocado la pantalla y enviarla al controlador para que pueda procesarla.

El funcionamiento de estas pantallas puede verse afectado por elementos externos. La presencia de contaminantes sobre la superficie también puede interferir con el funcionamiento de la pantalla táctil.

Capacitivas

Una pantalla táctil capacitiva esta cubierta con un material, habitualmente óxido de indio y estaño que conduce una corriente eléctrica continua a través del sensor. El sensor por tanto muestra un campo de electrones controlado con precisión tanto en el eje vertical como en el horizontal, es decir, adquiere capacitancia. El cuerpo humano también se puede considerar un dispositivo eléctrico en cuyo interior hay electrones, por lo que también dispone de capacitancia. Cuando el campo de capacitancia normal del sensor (su estado de referencia) es alterado por otro campo de capacitancia, como puede ser el dedo de una persona, los circuitos electrónicos situados en cada esquina de la pantalla miden la 'distorsión' resultante en la onda senoidal característica del campo de referencia y envía la información acerca de este evento al controlador para su procesamiento matemático. Los sensores capacitivos deben ser tocados con un dispositivo conductivo en contacto directo con la mano o con un dedo, al contrario que las pantallas resistivas o de onda superficial en las que se puede utilizar cualquier objeto. Las pantallas táctiles capacitivas no se ven afectadas por elementos externos y tienen una alta claridad, pero su complejo procesado de la señal hace que su coste sea elevado.

Infrarrojos

Las pantallas táctiles por infrarrojos consisten en una matriz de sensores y emisores infrarrojos horizontales y verticales. En cada eje los receptores están en el lado opuesto a los emisores de forma que al tocar con un objeto la pantalla se interrumpe un haz infrarrojo vertical y otro horizontal, permitiendo de esta forma localizar la posición exacta en que se realizó el contacto. Este tipo de pantallas son muy resistentes por lo que son utilizadas en muchas de las aplicaciones militares que exigen una pantalla táctil.

Galga Extensiométrica

Cuando se utilizan galgas extensiométricas la pantalla tiene una estructura elástica de forma que se pueden utilizar galgas extensiométricas para determinar la posición en que ha sido tocada a partir de las deformaciones producidas en la misma. Esta tecnología también puede medir el eje Z o la presión ejercida sobre la pantalla. Se usan habitualmente en sistemas que se encuentran expuestos al público como máquinas de venta de entradas, debido sobre todo a su resistencia al vandalismo.

Imagen Óptica

Es un desarrollo relativamente moderno en la tecnología de pantallas táctiles, dos o más sensores son situados alrededor de la pantalla, habitualmente en las esquinas. Emisores de infrarrojos son situados en el campo de vista de la cámara en los otros lados de la pantalla. Un toque en la pantalla muestra una sombra de forma que cada par de cámaras puede triangularizarla para localizar el punto de contacto. Esta tecnología está ganando popularidad debido a su escalabilidad, versatilidad y asequibilidad, especialmente para pantallas de gran tamaño.

Tecnología de Señal Dispersiva

Introducida en el año 2002, este sistema utiliza sensores para detectar la energía mecánica producida en el cristal debido a un toque. Unos algoritmos complejos se encargan de interpretar esta información para obtener el punto exacto del contacto. Esta tecnología es muy resistente al polvo y otros elementos externos, incluidos arañazos. Como no hay necesidad de elementos adicionales en la pantalla también proporciona unos excelentes niveles de claridad. Por otro lado, como el contacto es detectado a través de vibraciones mecánicas, cualquier objeto puede ser utilizado para detectar estos eventos, incluyendo el dedo o uñas. Un efecto lateral negativo de esta tecnología es que tras el contacto inicial el sistema no es capaz de detectar un dedo u objeto que se encuentre parado tocando la pantalla.

Reconocimiento de Pulso Acústico

Introducida en el año 2006, estos sistemas utilizan cuatro transductores piezoeléctricos situados en cada lado de la pantalla para convertir la energía mecánica del contacto en una señal electrónica. Esta señal es posteriormente convertida en una onda de sonido, la cual es comparada con el perfil de sonido preexistente para cada posición en la pantalla. Este sistema tiene la ventaja de que no necesita ninguna malla de cables sobre la pantalla y que la pantalla táctil es de hecho de cristal, proporcionando la óptica y la durabilidad del cristal con el que está fabricada. También presenta las ventajas de funcionar con arañazos y polvo sobre la pantalla, de tener unos altos niveles de precisión y de que no necesita ningún objeto especial para su utilización.

Especificaciones HID

Las pantallas táctiles se encuentran definidas dentro de la especificación de dispositivos HID para puerto USB como digitalizadores, junto con dispositivos como touchpads y tabletas digitalizadoras entre otros. Las pantallas táctiles se identifican con el usage ID 04.

La especificación incluye los campos utilizados para el manejo de este tipo de dispositivos. Algunos de los más interesantes para el manejo de las pantallas táctiles son:

  • Tip Pressure: que representa la fuerza por un transductor, habitualmente un estilo o también un dedo.
  • Barrel Pressure: fuerza que ejerce el usuario en el sensor del transductor, como por ejemplo un boton sensible a la presión en el puntero de manejo.
  • In Range: que indica que el transductor se encuentra en el area donde la digitalización es posible. Se representa por un bit
  • Touch: indica si un dedo está tocando la pantalla. El sistema suele interpretarlo como un clic de botón primario
  • Untouch: indica que el dedo ha perdido contacto con la superficie de la pantalla. Se interpreta como la acción de soltar el botón primario.
  • Tap: indica que se ha realizado un toque con el dedo en la pantalla, levantándolo rápidamente sin prolongar el contacto. Se interpreta como un evento provocado por un botón.

Pantalla De Plasma

(Plasma Display Panel – PDP) es un tipo de pantalla plana habitualmente usada para grandes TV (alrededor de 37 pulgadas o 940 mm.). Consta de muchas celdas diminutas situadas entre dos paneles de cristal que contienen una mezcla de gases nobles (neon y xenon). El gas en las celdas se convierte eléctricamente en plasma el cual provoca que los fósforos emitan luz.

Historia

La pantalla de plasma fue inventada en 1964 en la Universidad de Illinois por Donald L. Bitzer, H. Gene Slottow y el estudiante Robert Willson para el PLATO Computer System. Las pantallas originales eran monocromas (naranja, verde, amarillo) y fueron muy populares al comienzo de los 70 por su dureza y porque no necesitaban ni memoria ni circuitos para actualizar la imagen. A finales de los 70 tuvo lugar un largo periodo de caída en las ventas debido a que las memorias de semiconductores hicieron a las pantallas CRT más baratas que las pantallas de plasma. No obstante, su tamaño de pantalla relativamente grande y la poca profundidad de su cuerpo las hicieron aptas para su colocación en vestíbulos y bolsas de valores.

En 1983, IBM introdujo una pantalla monocroma de 19 pulgadas (483mm) que era capaz de mostrar simultáneamente cuatro sesiones de terminal de la máquina virtual del IBM 3270. Esta fábrica fue trasladada en 1987 a una compañía llamada Plasmaco que había sido fundada recientemente por el doctor Larry F. Weber (uno de los estudiantes del doctor Bitzer), Stephen Globus y James Kehoe (que era el encargado de planta de IBM).

En 1992, Fujitsu creó la primera pantalla de 21 pulgadas (533mm) a color.

En 1996, Matsushita Electrical Industries (Panasonic) compró Plasmaco, su tecnología y su fábrica americana.

En 1997, Pioneer empezó a vender la primera televisión de plasma al público. Las pantallas de plasma actuales se pueden ver habitualmente en los hogares y son más finas y grandes que sus predecesoras. Su pequeño grosor les permite competir con otros aparatos como los proyectores.

El tamaño de las pantallas ha crecido desde aquella pantalla de 21 pulgadas de 1992. La pantalla de plasma más grande del mundo ha sido mostrada en el Consumer Electronics Show del año 2008 en Las Vegas (U.S.A.) y es una pantalla de 150 pulgadas creada por Panasonic.

Hasta hace poco, su brillo superior, su tiempo de respuesta más rápido, su gran espectro de colores y su mayor ángulo de visión (comparándolas con las pantallas LCD) hicieron de las pantallas de plasma una de las tecnologías de visión para HDTV más populares. Durante mucho tiempo se creyó que la tecnología LCD era conveniente tan sólo para pequeñas televisiones y que no podía competir con la tecnología del plasma en las pantallas más grandes (particularmente de 42 pulgadas en adelante).

Sin embargo, tras esto, los cambios y mejoras en la tecnología LCD han hecho más pequeña esta diferencia. Su poco peso, bajos precios, mayor resolución disponible (lo que es importante para HDTV) y a menudo bajo consumo eléctrico convirtieron a las pantallas LCD en duras competidoras en el mercado de las televisiones. A finales del año 2006 los analistas observaron que las pantallas LCD estaban alcanzando a las de plasma, particularmente en el importante segmento de las pantallas de 40 pulgadas o más dónde los plasmas habían disfrutado de un fuerte dominio un par de años antes. Hoy en día las LCD ya compiten con la Plasma en segmentos de 50 y 60" donde existe casi tanta variedad en ambas tecnologías. Por otro lado el Precio al publico se ha invertido ya que la demanda de LCD es alta y la Plasma esta viendo bajar sus precios por debajo de su competidor. Otra tendencia de la industria es la consolidación de los fabricantes de pantallas de plasma con alrededor de cincuenta marcas disponibles pero solo cinco fabricantes.

Características generales

Composición de una pantalla de plasma

Composición de una pantalla de plasma

Las pantallas de plasma son brillantes (1000 lux o más por módulo), tienen un amplia gama de colores y pueden fabricarse en tamaños bastante grandes, hasta 262 cm de diagonal. Tienen una luminancia muy baja a nivel de negros, creando un negro que resulta más deseable para ver películas. Esta pantalla sólo tiene cerca de 6 cm de grosor y su tamaño total (incluyendo la electrónica) es menor de 10 cm. Los plasmas usan tanta energía por metro cuadrado como los televisores CRT o AMLCD. El consumo eléctrico puede variar en gran medida dependiendo de qué se esté viendo en él. Las escenas brillantes (como un partido de fútbol) necesitarán una mayor energía que las escenas oscuras (como una escena nocturna de una película). Las medidas nominales indican 400 vatios para una pantalla de 50 pulgadas. Los modelos relativamente recientes consumen entre 220 y 310 vatios para televisores de 50 pulgadas cuando se está utilizando en modo cine. La mayoría de las pantallas están configuradas con el modo “tienda” por defecto y consumen como mínimo el doble de energía que con una configuración más cómoda para el hogar.

El tiempo de vida de la última generación de pantallas de plasma está estimado en unas 100.000 horas (o 30 años a 8 horas de uso por día) de tiempo real de visionado. En concreto, éste es el tiempo de vida medio estimado para la pantalla, el momento en el que la imagen se ha degradado hasta la mitad de su brillo original. Se puede seguir usando pero se considera el final de la vida funcional del aparato.

Los competidores incluyen a LCD, CRT, OLED, AMLCD, DLP, SED-tv, etc. La principal ventaja de la tecnología del plasma es que pantallas muy grandes pueden ser fabricadas usando materiales extremadamente delgados. Ya que cada píxel es iluminado individualmente, la imagen es muy brillante y posee un gran ángulo de visión.

Detalles funcionales

Los gases xenon y neon en una televisión de plasma están contenidos en cientos de miles de celdas diminutas entre dos pantallas de cristal. Los electrodos también se encuentran “emparedados” entre los dos cristales, en la parte frontal y posterior de las celdas. Ciertos electrodos se ubican detrás de las celdas, a lo largo del panel de cristal trasero y otros electrodos, que están rodeados por un material aislante dieléctrico y cubiertos por una capa protectora de óxido de magnesio, están ubicados en frente de la celda, a lo largo del panel de cristal frontal. El circuito carga los electrodos que se cruzan en cada celda creando diferencia de voltaje entre la parte trasera y la frontal y provocan que el gas se ionice y forme el plasma. Posteriormente, cuando los iones del gas corren hacia los electrodos y colisionan se emiten fotones.

En una pantalla monocroma es posible mantener el estado ionizado mediante la aplicación de un voltaje de bajo nivel a todos los electrodos verticales y horizontales, incluso cuando el voltaje iónico ha sido retirado. Para borrar una celda se elimina todo el voltaje de un par de electrodos. Este tipo de pantallas tiene memoria inherente y no usa fósforos. Se añade una pequeña cantidad de nitrógeno al neón para incrementar la histéresis.

En las pantallas a color, la parte trasera de cada celda es cubierta con un fósforo. Los fotones ultravioletas emitidos por el plasma excitan esos fósforos y emiten luz de colores. La operación de cada una de las celdas se puede comparar con la de una lámpara fluorescente.

Cada pixel está compuesto por tres celdas separadas (subpixeles), cada una con fósforos de diferentes colores. Un subpixel tiene un fósforo con luz de color rojo, otro subpixel tiene un fósforo con luz de color verde y el otro subpixel lo tiene con luz de color azul. Estos colores se mezclan para crear el color final del píxel de forma análoga a como se hace en los “triads” de las máscaras de sombras de los CRT. Variando los pulsos de la corriente que fluye a través de las diferentes celdas miles de veces por segundo, el sistema de control puede incrementar o reducir la intensidad del color de cada subpixel para crear billones de combinaciones diferentes de rojo, verde y azul. De esta forma, el sistema de control es capaz de producir la mayoría de los colores visibles. Las pantallas de plasma usan los mismos fósforos que los CRTs, lo cual explica la extremadamente precisa reproducción del color.

Ratio de contraste

El ratio de contraste es la diferencia entre la parte más brillante de la imagen y la más oscura, medida en pasos discretos, en un momento dado. Generalmente, cuanto más alto es el ratio de contraste más realista es la imagen. Los ratios de contraste para pantallas de plasma se suelen anunciar de 15.000:1 a 30.000:1. Esta es una ventaja importante del plasma sobre otras tecnologías de visualización. Aunque no hay ningún tipo de directriz en la industria acerca de cómo informar sobre el ratio de contraste, la mayoría de los fabricantes siguen o bien el estándar ANSI o bien realizan tests “full-on-full-off”. El estándar ANSI usa un patrón para el test de comprobación a través del cuál los negros más oscuros y los blancos más luminosos son medidos simultáneamente, logrando la clasificación más realista y exacta. Por el otro lado, un test “full-on-full-off” mide el ratio usando una pantalla de negro puro y otra de blanco puro, lo que consigue los valores más altos pero no representa un escenario de visualización típico. Los fabricantes pueden mejorar artificialmente el ratio de contraste obtenido incrementando el contraste y el brillo para lograr los valores más altos en los test. Sin embargo, un ratio de contraste generado mediante este método sería engañoso ya que la imagen sería esencialmente imposible de ver con esa configuración. Se suele decir a menudo que las pantallas de plasma tienen mejores niveles de negros (y ratios de contraste), aunque tanto las pantallas de plasma como las LCD tienen sus propios desafíos tecnológicos. Cada celda de una pantalla de plasma debe ser precargada para iluminarla (de otra forma la celda no respondería lo suficientemente rápido) y esa precarga conlleva la posibilidad de que las celdas no logren el negro verdadero. Algunos fabricantes han trabajado duro para reducir la precarga y el brillo de fondo asociado hasta el punto en el que los niveles de negro de los plasmas modernos comienzan a rivalizar con los CRT. Con la tecnología LCD, los pixeles negros son generados por un método de polarización de la luz y son incapaces de ocultar completamente la luz de fondo subyacente.

Un defecto de la tecnología de plasma es que si se utiliza habitualmente la pantalla al nivel máximo de brillo se reduce significativamente el tiempo de vida del aparato. Por este motivo, muchos consumidores usan una configuración de brillo por debajo del máximo, pero que todavía sigue siendo más brillante que las pantallas CRT.

Efecto de pantalla quemada

En las pantallas electrónicas basadas en fósforo (incluyendo televisiones de rayos catódicos y de plasma), una exposición prolongada de una imagen estática durante mucho tiempo puede provocar que los objetos que se muestren en ella queden marcados en la pantalla durante un tiempo. Esto es debido al hecho de que los compuestos de fósforo que emiten la luz pierden su luminosidad con el uso. Como resultado, cuando ciertas áreas de la pantalla son usadas más frecuentemente que otras, a lo largo del tiempo las áreas de baja luminosidad se vuelven visibles a simple vista, esto se conoce como pantalla quemada. Un síntoma muy común es que la calidad de la imagen disminuye gradualmente conforme a las variaciones de luminosidad que tienen lugar a lo largo del tiempo, resultando una imagen con aspecto “embarrado”

Las pantallas LCD por el contrario no suelen sufrir el denominado “efecto fantasma” típico de las pantallas CRT y plasma.

Ventajas de las PLASMA frente a las LCD j

  • Mayor contraste, lo que se traduce en una mayor capacidad para reproducir el color negro y la escala completa de grises.
  • Mayor angulo de visión
  • Ausencia de tiempo de respuesta, lo que evita el efecto "estela" o "efecto fantasma" que se produce en ciertos LCD debido a altos tiempos de refresco (mayores a 12ms).
  • No contiene mercurio, a diferencia de las pantallas LCD.
  • Colores más suaves al ojo humano.
  • Mayor numero de colores y más reales.

Ventajas de las LCD frente a las PLASMA

  • El coste de fabricación de los monitores de plasma es superior al de las pantallas LCD, este coste de fabricación no afecta tanto al PVP como al margen de ganancia de las tiendas, de ahí que muchas veces las grandes superficies no suelan trabajar con ellas, en beneficio de los lcds.
  • Consumo eléctrico: una televisión con pantalla de plasma grande puede consumir hasta un 30% más de electricidad que una televisión LCD.
  • Efecto de "pantalla quemada" en plasma: si la pantalla permanece encendida durante mucho tiempo mostrando imágenes estáticas (como logotipos o encabezados de noticias) es posible que la imagen quede fija o sobreescrita en la pantalla. Aunque este efecto está solucionado desde la octava generación. Actualmente vamos por la generación décimo primera y este efecto ya no se reproduce).

Panel SED

El Panel SED es un tipo de panel visualizador para pantallas planas caracterizado por usar la tecnología de las pantallas de tubo tradicionales (CRT) para cada uno de los puntos (píxeles) mostrados en pantalla. Cada pixel es un micro tubo de rayos catódicos. En principio, este tipo de paneles ofrece las ventajas de los tubos de imagen y los TFT, sin los defectos de ambos. De esta manera se consigue mejorar el contraste y el ángulo de visión sin aumentar el consumo. También permite ampliar las dimensiones de la pantalla con respecto a las pantallas de tecnología TFT o las de plasma. El proyecto ha sido desarrollado conjuntamente por Canon y Toshiba.

Objetivos y desarrollo

El panel SED (Surface-conduction Electron-emitter Display o panel de emisiones de electrones dirigidos) fue pensado y creado para mejorar la tecnología con la que cuentan los televisores planos. Este tipo de panel pretende cubrir las necesidades requeridas para la alta definición en todos los campos relacionados con la imagen digital (desde su aplicación en televisores, como en la aplicación para la fotografía y películas).

El proyecto empezó a mediados de los años 80 por Canon, y más tarde, en 1999 tuvo un gran apoyo por parte Toshiba, multinacional dedicada a la electrónica. Esta unión plantea la creación de un proyecto común bajo un mismo nombre, de esta manera aparece esta tecnología con el nombre de SED Inc. Además, el desarrollo de esta tecnología se ha acelerado vertiginosamente con perspectivas para poderla comercializar en el 2007 (previsión de venta en el mercado sin confirmar). La compañía prevé pantallas que soporten más de 40 pulgadas.

Tecnología

La tecnología utilizada para estos paneles aún está en fase de desarrollo y no hay especificaciones de cómo va a funcionar exactamente. El principio radica en el de las televisiones normales de Tubo de Rayos Catódicos, (CRT). En los CRT, un haz de electrones es focalizado hacia cada píxel para iluminarlo según convenga. En la tecnología SED este procedimiento se "simplifica" porque se utiliza un haz de electrones individual para cada píxel, el cual iluminará posteriormente el fósforo encargado de producir la luz que hará brillar los colores primarios RGB de cada píxel. Gracias a esto no habrá que dirigir y focalizar un único rayo de electrones sobre una matriz de píxeles, sino que hay que montar millones de rayos de electrones sobre un panel SED. Uno para cada píxel.

Así pues, cada píxel tendrá su propio cañón de electrones. Este cañón de electrones se forma a partir de dos electrodos muy pequeños (microscópicos) separados por unos nanómetros de distancia. A estos electrodos se les aplica una tensión de 16 voltios que "atraviesa" los nanómetros que separa los electrodos. Fruto de este "salto" entre electrodos, la corriente genera electrones que salen disparados hacia todas las direcciones. Para canalizar estos electrones hasta el fósforo que lo hará brillar se utiliza un campo eléctrico de 10 Kilovoltios hacia la dirección donde esté el fósforo. De esta manera se genera un haz de electrones unidireccional que impacta sobre el fósforo perteneciente a un determinado píxel.

Para formar una imagen entera se necesitan cientos de miles de píxeles (millones en alta definición). Por lo tanto actualmente se está estudiando la colocación de los cañones de electrones en un reducido espacio, sin que ello signifique una pérdida de funcionalidad por parte de dichos cañones o una pérdida de homogeneidad en la imagen.

Características y ventajas

Al utilizar una tecnología tan parecida a la de CRT, todas las características y logros alcanzados con dicha tecnología podrán ser aplicados a las pantallas SED. Los televisores que utilicen paneles SED tendrán una calidad de imagen igual a todos los televisores CRT, consiguiendo mejorar de una manera excelente las deficiencias de los aparatos de pantalla plana LCD, Plasma o TFT.

  • El color, el contraste y la luminosidad serán iguales o mejores que los CRT.
  • No habrá ningún problema para el ángulo de visión de la pantalla (De este modo no habrá cambios de color y brillo desde diferentes ángulos).
  • Su consumo rebaja 2/3 la potencia utilizada en un CRT. 1/3 con respecto a la utilizada en los LCD.
  • Tolerará temperaturas desde los -40º a los +85º.
  • El proceso de fabricación es más sencillo que el de las pantallas LCD.
  • No habrá problemas con el refresco de la imagen y su fluidez ya que utilizarán la misma velocidad de refresco que un televisor CRT normal.
  • El color negro alcanzará mayor calidad.

Diodo orgánico de emisión de luz

Un diodo orgánico de emisión de luz, también conocido como OLED (acrónimo del inglés: Organic Light-Emitting Diode), es un diodo que se basa en una capa electroluminiscente formada por una película de componentes orgánicos que reaccionan, a una determinada estimulación eléctrica, generando y emitiendo luz por sí mismos.

Existen muchas tecnologías OLED diferentes, tantas como la gran diversidad de estructuras (y materiales) que se han podido idear (e implementar) para contener y mantener la capa electroluminiscente, así como según el tipo de componentes orgánicos utilizados.

Las principales ventajas de los OLEDs son: menor coste, mayor escalabilidad, mayor rango de colores, más contrastes y brillos, mayor ángulo de visión, menor consumo y, en algunas tecnologías, flexibilidad. Pero la degradación de los materiales OLED han limitado su uso por el momento. Actualmente se está investigando para dar solución a los problemas derivados, hecho que hará de los OLEDs una tecnología que puede reemplazar la actual hegemonía de las pantallas LCD (TFT) y de la pantalla de plasma.

Por todo ello, OLED puede y podrá ser usado en todo tipo de aplicaciones: pantallas de televisión, pantalla de ordenador, pantallas de dispositivos portátiles (teléfonos móviles, PDAs, reproductores MP3...), indicadores de información o de aviso, etc. con formatos que bajo cualquier diseño irán desde unas dimensiones pequeñas (2") hasta enormes tamaños (equivalentes a los que se están consiguiendo con LCD). Mediante los OLEDs también se pueden crear grandes o pequeños carteles de publicidad, así como fuentes de luz para iluminar espacios generales. Además, algunas tecnologías OLED tienen la capacidad de tener una estructura flexible, lo que ya ha dado lugar a desarrollar pantallas plegables, y en el futuro quizá pantallas sobre ropa y tejidos, etc.


Historia



Prototipo de pantalla OLED de 3,8 cm de diagonal

Prototipo de pantalla OLED de 3,8 cm de diagonal

La electroluminiscencia en materiales orgánicos fue producida en los años 50 por Bernanose y sus colaboradores.

En un artículo de 1977, del Journal of the Chemical Society, Shirakawa et al. comunicaron el descubrimiento de una alta conductividad en poliacetileno dopado con yodo. Heeger, MacDiarmid & Shirakawa recibieron el premio Nobel de química de 2000 por el "descubrimiento y desarrollo de conductividad en polímeros orgánicos".

En un artículo de 1990, de la revista Nature, Burroughs et al. comunicaron el desarrollo de un polímero de emisión de luz verde con una alta eficiencia.

Estructura básica

Un OLED está compuesto por dos finas capas orgánicas: capa de emisión y capa de conducción, que a la vez están comprendidas entre una fina película que hace de terminal ánodo y otra igual que hace de cátodo. En general estas capas están hechas de moléculas o polímeros que conducen la electricidad. Sus niveles de conductividad eléctrica van desde los niveles aisladores hasta los conductores, y por ello se llaman semiconductores orgánicos (ver polímero semiconductor).

La elección de los materiales orgánicos y la estructura de las capas determinan las características de funcionamiento del dispositivo: color emitido, tiempo de vida y eficiencia energética.

Estructura básica de un OLED

Estructura básica de un OLED


Principio de funcionamiento

Se aplica voltaje a través del OLED de manera que el ánodo es positivo respecto del cátodo. Esto causa una corriente de electrones que fluye en este sentido. Así, el cátodo da electrones a la capa de emisión y el ánodo los sustrae de la capa de conducción.

Seguidamente, la capa de emisión comienza a cargarse negativamente (por exceso de electrones), mientras que la capa de conducción se carga con huecos (por carencia de electrones). Las fuerzas electroestáticas atraen a los electrones y a los huecos, los unos con los otros, y se recombinan (en el sentido inverso de la carga no habría recombinación y el dispositivo no funcionaría). Esto sucede más cercanamente a la capa de emisión, porque en los semiconductores orgánicos los huecos son más movidos que los electrones (no ocurre así en los semiconductores inorgánicos).

La recombinación es el fenómeno en el que un átomo atrapa un electrón. Dicho electrón pasa de una capa energética mayor a otra menor, liberándose una energía igual a la diferencia entre energías inicial y final, en forma de fotón.

La recombinación causa una emisión de radiación a una frecuencia que está en la región visible, y se observa un punto de luz en un color determinado. La suma de muchas de estas recombinaciones que ocurren de forma simultánea es lo que llamaríamos imagen.

Principio de funcionamiento de OLED: 1. Cátodo (-), 2. Capa de emisión, 3. Emisión de radiación (luz), 4 . Capa de conducción, 5. Ánodo (+)

Principio de funcionamiento de OLED: 1. Cátodo (-), 2. Capa de emisión, 3. Emisión de radiación (luz), 4 . Capa de conducción, 5. Ánodo (+)


Tecnologías relacionadas

  • SM-OLED (Small-molecule OLED)

Los SM-OLEDs se basan en una tecnología desarrollada por la compañía Eastman Kodak. La producción de pantallas con pequeñas moléculas requiere una deposición en el vacío de las moléculas que se consigue con un proceso de producción mucho más caro que con otras técnicas (como las siguientes). Típicamente se utilizan sustratos de vidrio para hacer el vacío, pero esto quita la flexibilidad a las pantallas aunque las moléculas sí lo sean.

  • PLED (Polymer Light-Emitting Diodes)

Los PLEDs o LEPs (Light-Emitting Polymers) han sido desarrollados por la Cambridge Display Technology. Se basan en un polímero conductivo electroluminiscente que emite luz cuando le recorre una corriente eléctrica. Se utiliza una película de sustrato muy delgada y se obtiene una pantalla de gran intensidad de color que requiere relativamente muy poca energía en comparación con la luz emitida. El vacío, a diferencia de los SM-OLED, no es necesario y los polímeros pueden aplicarse sobre el sustrato mediante una técnica derivada de la “impresión de rayo comercial” (llamada inkjet en inglés). El sustrato usado puede ser flexible, como un plástico PET. Con todo ello, los PLEDs pueden ser producidos de manera económica.

  • TOLED (Transparent OLED)

Los TOLEDs usan un terminal transparente para crear pantallas que pueden emitir en su cara de delante, en la de atrás, o en ambas consiguiendo ser transparentes. Los TOLEDs pueden mejorar enormemente el contraste con el entorno, haciendo mucho más fácil el poder ver las pantallas con la luz del sol.

  • SOLED (Stacked OLED)

Los SOLEDs utilizan una arquitectura de píxel novedosa que se basa en almacenar subpíxeles rojos, verdes y azules, unos encima de otros en vez de disponerlos a los lados como sucede de manera normal en los CRTs y LCDs. Las mejoras en la resolución de las pantallas se triplican y se realza por completo la calidad del color.

Implementación en matrices

A parte de las tecnologías anteriores, las pantallas OLED pueden ser activadas a través de un método de conducción de la corriente por matriz que puede tener dos esquemas diferentes y da lugar a las tecnologías PMOLED y AMOLED.

  • PMOLED (Passive-matrix OLED)

Los PMOLEDs tienen pistas de cátodos, pistas de ánodos (perpendiculares a las de cátodos) y en el intermedio capas orgánicas. Las intersecciones entre cátodos y ánodos componen los píxels donde la luz se emite. Una circuitería externa aplica corriente a las pistas adecuadas, determinando qué píxeles se encenderán y cuáles permanecerán apagados. Nuevamente, el brillo de cada píxel es proporcional a la cantidad de corriente aplicada, que se distribuye de manera uniforme en todos los píxeles (N píxeles alimentados cada uno con 1/N de la corriente aplicada).

Los PMOLEDs son fáciles de construir, pero consumen más potencia que otros tipos de OLEDs, principalmente debido a la potencia necesaria para la circuitería externa y el consumo que requiere la iluminación variable de los píxels. Los PMOLEDs son los más eficientes para visualizar texto e iconos, y adquieren su mejor funcionamiento en dimensiones más pequeñas de 2” o 3” de diagonal, o con menos de unas 100 filas. Los PMOLEDs se convierten así en los más adecuados para aplicaciones de pequeñas pantallas, como las que se encuentran en teléfonos móviles, PDAs y reproductores MP3. Además, los PMOLEDs consumen menos batería que los actuales LCDs que se están usando en estos dispositivos.

  • AMOLED (Active-matrix OLED)

Los AMOLEDs tienen capas completas de cátodo, moléculas orgánicas y de ánodo. Sobre la capa de ánodo se sobrepone una matriz de transistores de película fina (Thin Film Transistor, TFT). La matriz TFT es la circuitería que determina qué píxeles encender para formar la imagen.

Los AMOLEDs consumen menos potencia que los PMOLEDs porque la matriz TFT requiere menos potencia que una circuitería externa. Así, los AMOLEDs son más eficientes y consiguen tener unas velocidades de refresco más rápidas, ideales para vídeo. Las mejores aplicaciones donde se sitúan los AMOLEDs son monitores de ordenador, grandes pantallas de televisión y, si el precio es permisivo, grandes carteles electrónicos.

Principales ventajas

Los OLEDs ofrecen muchas ventajas en comparación con los LCDs, LEDs y pantallas de plasma.

Más delgados y flexibles. Por una parte, las capas orgánicas de polímeros o moléculas de los OLEDs son más delgadas, luminosas y mucho más flexibles que las capas cristalinas de un LED o LCD. Por otra parte, en algunas tecnologías el sustrato de impresión de los OLEDs puede ser el plástico, que ofrece flexibilidad frente a la rigidez del cristal que da soporte a los LCDs o pantallas de plasma.

Más económicos, en el futuro. En general, los elementos orgánicos y los sustratos de plástico serán mucho más económicos. También, los procesos de fabricación de OLEDs pueden utilizar conocidas tecnologías de impresión de tinta (en inglés, conocida como inkjet), hecho que disminuirá los costes de producción.

Más brillo y contrastes. Los píxeles de OLED emiten luz directamente. Por eso, respecto los LCDs posibilitan un rango más grande de colores, más brillo y contrastes, y más ángulo de visión.

Menos consumo de energía. Los OLEDs no necesitan la tecnología backlight, es decir, un elemento OLED apagado realmente no produce luz y no consume energía, a diferencia de los LCDs que no pueden mostrar un verdadero “negro” y lo componen con luz consumiendo energía continuamente. Así, los OLEDs muestran imágenes con menos potencia de luz, y cuando son alimentados desde una batería pueden operar largamente con la misma carga.

Más escalabilidad y nuevas aplicaciones. La capacidad futura de poder escalar las pantallas a grandes dimensiones hasta ahora ya conseguidas por los LCDs y, sobre todo, poder enrollar y doblar las pantallas en algunas de las tecnologías OLED que lo permiten, abre las puertas a todo un mundo de nuevas aplicaciones que están por llegar.

Desventajas y problemas actuales

Tiempos de vida cortos. Las capas OLED verdes y rojas tienen largos tiempos de vida (10.000 a 40.000 horas), pero actualmente las azules tienen mucha menos duración (sólo 1.000 horas).

Proceso de fabricación caro. Actualmente la mayoría de tecnologías OLED están en proceso de investigación, y los procesos de fabricación (sobre todo inicialmente) son económicamente elevados, a no ser que se apueste por un diseño que se utilice en economías de escala.

Agua. El agua puede fácilmente estropear permanentemente los OLEDs.

Impacto medioambiental. Los componentes orgánicos (moléculas y polímeros) se ha visto que son difíciles de reciclar (alto coste, complejas técnicas). Ello puede causar un impacto al medio ambiente muy negativo en el futuro.

Más allá

En la actualidad existen investigaciones para desarrollar una nueva versión del LED orgánico que no sólo emita luz, sino que también recoja la energía solar para producir electricidad. De momento no hay ninguna fecha para su comercialización, pero ya se está hablando de cómo hacerlo para su fabricación masiva. Con esta tecnología se podrían construir todo tipo de pequeños aparatos eléctricos que mediante su propio display se podrían autoabastecer de energía.